
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADP012688
TITLE: A Model-Based Diagnosis Framework for Distributed Systems

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: Thirteenth International Workshop on Principles of Diagnosis
[DX-2002]

To order the complete compilation report, use: ADA405380

The component part is provided here to allow users access to individually authored sections
f proceedings, annals, symposia, etc. However, the component should be considered within

-he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP012686 thru ADP012711

UNCLASSIFIED



A Model-Based Diagnosis Framework for Distributed Systems*

Gregory Provan
Rockwell Scientific Company,

1049 Camino Dos Rios, Thousand Oaks, CA 91360
gprovan@rwsc.com

Abstract algorithm uses as input the directed graph (digraph) describ-
We present a distributed model-based diagnostics ing the connectivity of distributed components,with arc di-
architecture for embedded diagnostics. We extend rectionality derived from the causal relation between the the
thetrarcitectue fordem-be ed deiagnotics. We eends components. Given that real-world graphs of this type are
the traditional model-based definition of diagnosis either tree-structured or can be converted to tree-structured
to a distributed diagnosis definition, in which we graphs, we propose a graph-based message-passing algorithm
havea collection of distributed componrentsd wphoe which passes diagnoses as messages and synthesizes local di-

Assuming that each component can compute a local agnoses into a globally minimal diagnosis in a two-phase pro-
Asminimal diagnosis basd c onlyeont sensorpteraal cess. By compiling diagnoses for collections of componentsminimal diagnosis based only on sensors internal (as determined by the graph's topology), we can significantly
systo that scmptionwen andeknoee onalygofitsm ot improve the performance of distributed embedded systems.
sysrantemdescriptionlly weunscrbe and ao ithmthat We show how this approach can be used for the distributed

diagnosis of systems with arbitrary topologies by transform-
diagnosis for the complete system. By compiling ing such topologies into trees.
diagnoses for groups of components based on the One important point to stress is that this approach synthe-
interconnectivey graph, the algorithm efficiently sizes diagnoses computed locally, and places no restriction on
synthesizes the local diagnoses computed in dis- the technique used to compute each local diagnosis (e.g., neu-
tributed components into a globally-sound system ral network, Bayesian network, etc.), provided that each local
diagnosis using a graph-based message-passing ap- diagnosis is a least-cost or most-likely diagnosis. The syn-
proach. thesis approach takes this set of self-diagnosing sub-systems,

together with the connectivity of these sub-systems, to com-
1 INTRODUCTION pute globally-consistent diagnoses.

The approach presented in this article assumes that all
This article proposes a new technique for diagnosing dis- faults are diagnosable (i.e., can be isolated) through a central-

tributed systems using a model-based approach. We assume ized algorithm. We examine whether a distributed approach
that we have a system consisting of a set of inter-connected can diagnose all faults, since a distributed algorithm can iso-
components, each of which computes a local (component) di- late faults no better than a centralized algorithm. Issues re-
agnosis.' We adopt the structure-based diagnosis framework lating to restricted diagnosability of both centralized and dis-
of Darwiche [8] for synthesizing component diagnoses into tributed algorithms due to insufficient observable data (e.g.,
globally-sound diagnoses, where we obtain the structure from when the suite of sensors is insufficient to guarantee complete
the component connectivity. Unlike previous approaches that diagnosability) are examined in [21 ].
compute diagnoses using the system observations and a sys- This article is organized as follows. Section 2 introduces
tem description [8; 10], we transform the component diagno- the application model that we use to demonstrate our ap-
sis synthesis into the space of minimal diagnoses. Assum- proach. Section 3 introduces our modeling formalism, and
ing that each component can compute a local minimal diag- specifies our notion of centralized and distributed model.
nosis based only on sensors internal to that component and Section 4 describes how we diagnose distributed models.
knowledge only of the component system description, we de- Section 5 surveys some related work on this topic. We sum-
scribe an algorithm that guarantees a globally sound, com- marize our conclusions in Section 6.
plete and minimal diagnosis for the complete system. This

*Research supported in part by The Office of Naval Research 2 IN-FLIGHT ENTERTAINMENT
under contract number N00014-98-3-0012. EXAMPLE

'Note that one can compute component diagnoses using any
method which returns a minimal diagnosis (with respect to a speci-
fied minimality criterion). Throughout this article we use a simplified example of an



In-Flight Entertainment (IFE) system. Figure 1 shows the noses based on data local to the component. We do not place
schematic for an IFE system fragment where we have (1) a any restrictions on the type of algorithm used to compute the
transmitter module (Tx) that generates 10 movie channels diagnosis, except that the diagnosis be a least-cost diagno-
(consisting of both video and audio signals) and 10 audio sis. We will describe the cost function used by our synthesis
channels; (2) two area distribution boxes (ADB); and (3) at- algorithm in the following section.
tached to each ADB, we have two passenger units, Pil and
Pi 2 . For ADB j, passenger i, i - 1, 2 has a controller COj 3 MODEL-BASED DIAGNOSTICS USING
for selecting a video or audio channel, plus an audio unit 0, i CAUSAL NETWORKS
and video display ui. Control signal Cii is sent by passenger
i to ADBj and then to the transmitter, which in turn sends an This section formalizes our modeling and inference approach
RF signal (RF) to each passenger. to diagnostics and control reconfiguration. We first introduce

We adopt a notion of causal influence for describing how the model-based formalism, and then extend these notions to

different components affect the value of a signal as it propa- capture a distributed model-based formalism.
gates through the system. For example, the RF signal causally 3.1 FLAT (CENTRALIZED) MODELS
influences the passenger audio and video outputs. In this
model the observables are the control signals, plus for pas- We adopt and extend the model-based representation for
senger i downstream of ADBj sound (Sji) and video-display diagnosis of Darwiche [8]. We model the system using a
(VDji). We assign a fault-mode to the transmitter and to each causal network:
ADB and passenger unit. Definition 1 A system description is a four-tuple 4D

(V, , ýgE), where

C%--.S1 V is a set of variables comprising two variable types:
VD11  A is a set of variables (called assumables) representing

the failure modes of the components, V is a set of non-
c, F* Aassumable variables (V n A = 0) representing system

P S12  properties other than failure modes;

X g is a directed acyclic graph (DAG) called a causal
P-structure whose nodes are members in V U A and whose

directed arcs represent causal relations between pairs of
nodes;

S22 and E is a set of propositional sentences (called the do-
2 VD22 main axioms) constructedfrom members in V U A based

on the topological structure of g.

This definition of system description differs from the stan-
Figure 1: Schematic of IFE fragment, showing the main mod- dard definition (called SD in [22]) only in that we include
ules and the directed arcs of data-flows. a graph g to complement the domain axioms set of failure

modes (commonly called COMPS) and non-assumable vari-
Our modeling approach makes the following assumptions. ables.

First, we can specify a system using an object-oriented ap- The set of non-assumable variables consists of two exclu-
proach. In other words, a system can be defined as a col- sive subsets: Vob, (the set of observables) and V...b, (the
lection of components, which are connected together, e.g., set of unobservables).
physically, as in an HVAC system, or in terms of data trans- We can capture structural properties of the system descrip-
mission/reception, as in the IFE example. Our primary com- tion using the directed acyclic graph, or DAG, g. 3 For exam-
ponent consists of a block, which has properties: input set, ple, if an actuator determines if a motor is on or not, we say
output set, fault-mode, and equations. Given the fault-mode that the actuator causally influences the motor. More gener-
and input set, the equations provide a mapping to the output ally, A may directly causally influence B if A is a predecessor
set. In other words, the inputs are the only nodes with causal of B in g. We use B ox A to denote the direct causal influence
arcs into the block, and the outputs are the only nodes with of the value of B by the value of A.4 Through transitivity, we
causal arcs out of the block. Typically, we have causal depen- can deduce indirect causal influence. For example, if B ox A
dence of block outputs wi on inputs fi, i.e. Uci 0X fi. 2  and C ox B, then A indirectly influences C.

This distributed model consists of a set of sub-models, or This captures the notion of direct causal influence, i.e., a
blocks, which may be connected together. In our IFE exam- node N and those nodes that are directly causally affected by
ple, the transmitter block has inputs of control signals C 1 and N, using a clan. We define the notion of the clan of a node N
C2, and output an RF signal. of a DAG g in terms of graphical relationships as follows:

Second, we assume that each component computes diag- 3 1n other system description specifications, e.g. [12], these struc-
2The causal function co can be be generalized to include proposi- tural relations are captured using logical sentences.

tions, relations, probabilistic functions, qualitative differential equa- 4 This notion of causal influence does not guarantee that A influ-
tions, etc. We don't address such a generalization here. ences B, but that A may influence B.



Definition 2 (Clan) : Given a DAG g, the clan Y(Ni) of a (LRUs), based on a number of factors, such as fault-isolation
node Ni E g consists of the node Ni together with its children capabilities, physical constraints, and ease of repair. An LRU
in g. typically consists of a number of connected sub-systems, as

We adopt the notion of clan because we are interested in in the Passenger Unit of the IFE example, which consists of

synthesizing diagnoses computed at a set of distributed nodes circuit-cards to select audio/video channels and to drive the

organized in a tree structure. The intuition behind the algo- audio and video output devices. It is standard practice in
rithm is as follows: given local diagnoses, we start at the par- commercial aircraft to isolate faults only to the LRU-level,
ents of leaves in the decomposition tree and move up the tree and replace faulty components only at the LRU-level.
to the root, identifying if any node's diagnosis is affected by Definition 6 (Decomposition Function) a decomposition
the diagnoses of its children, and if so, synthesizing those di- function is a mapping V(1) 4 Dist that decomposes a
agnoses. To perform each synthesis operation, we use a clan. centralized system description 43 into a distributed system

A clan is dual to the well-known notion of family, which description 4 3dist {= f ¾, ., }. The distributed system
is typically defined as a node together with its parents in g. description induced by a decomposition function Vy is defined
This notion is important because we need to synthesize local by a decomposition H over the system variables V, i.e. a
diagnostics within tree-structured systems, and the clan pro- collection X = {X 1I ... , X,• } of nonempty subsets of V such
vides a more efficient means for doing so than the family for that (1) Vi 1 ... m. Xi E 2V; (2) V ui(Xi[Xi E 1).
tree-structured systems. For simplicity of notation, we will that (i = X in X C 0, (2 V U( X t s t.
denote the clan for node Ni, Y(Ni), as Yi. i

It is also important to define restrictions of subsets of ob- sepset, of variables between 4Di and (Dj.

servables: We can describe a distributed system description in terms
Definition 3 (Restriction) We denote by Oi the restriction of of a decomposition graph. A decomposition graph is a graph-
an instantiation 0 of variables V to the instantiation of a sub- ical representation of the system model, when viewed as a
set Vi of V. We denote the restriction of variable set T to collection of connected blocks. In this graph each vertex cor-
variables in sub-system description 4Di by T'i. responds to a block, and each directed edge corresponds to

a directed (causal) link between two blocks. Figure 2 shows
One of the key elements of diagnosing a system is the in- the decomposition graph for the extended IFE example. 5
stantiation of observables, since a diagnosis is computed for A decomposition graph is a directed tree, or D-tree, which
abnormal observable instantiations. is defined as follows:

Definition 4 (Instantiation) 0"'i is an instantiation of ob-
servables Vobs,' for system description 4D. (-Y denotes the Definition 7 A D-tree T-D is a directed graph with vertices
set of all instantiations of observables V,,bj'•. V(ThD) with a vertex ro, called the root, with the property

that for every vertex r C V(ThD) there is a unique directed
We specify failure-mode instantiations and partition the walk from ro to r.

possible states into normal states and faulty states as follows:
Definition 5 (Mode-Instantiation) A* is an instantiation of Definition 8 A decomposition graph Gx is an edge-labeled
behavior modes for mode-set A. Further we decomposition D-tree G(X, S, ,) with (1) vertices Xl {X 1 , ... X, },
"A* such that A* "A' U A", where A" denotes normal where each vertex consists of a collection of variables of 9,
system behaviour i.e. all modes are normal, and A' denotes (2) directed edges join pairs of vertices with non-empty in-
a system fault, which may consist of simultaneous faults in tersections, and arc direction is specified by the causal direc-
multiple components. tion of the arcs between blocks in the decomposition graph,

An assumable (behavior-mode variable) specifies the i.e., labls (Xor Xk)sIaX r n efine 0by Xt og Xi e c, and (3)

discrete set of behavior-states that a component can edge labels (or separators) defined by the edge intersections,

have, e.g., and AND-gate can be either OK, stuck-at- = {•ij Xi 0 Xi : 0}.

0, or stuck-at-]. Our IFE-system, with component-set We assume that in a distributed system description, for any
{Tx, ABD 1 , ADB 2 , P11, P 12 , P 21, P 22 }, can have a mode- block all sensor data is local, and all equations describing dis-
instantiation in which all components are OK except P11, tributed subsystems refer to local sensor data and local con-
which is in audio-fail mode. In this case we have A0 ditions.
{Tx - mode OK, ABD1 - mode OK, ADB 2 -

mode OK, P 12 -mode OK, P21 -mode OK, P 22- 3.3 DIAGNOSIS SPECIFICATION
mode OK} and A F = {P11 - mode =audio-fail}. We define the notion of diagnosis as follows:

3.2 DISTRIBUTED SYSTEM DESCRIPTIONS Definition 9 (Diagnosis) Given a system description 4) with
This section describes our distributed formalism, which ap- domain axioms E and an instantiation 0 of V obs, a dia ,nosis
plies to collections of interconnected components, or blocks. D(O) is an instantiation of behavior modes A F U A such
We assume that a distributed system description is provided that E U 0 u A4 u A0 _ I.
either by the user or is deduced from the physical constraints
of available local diagnostic agents and physical connectiv- 5 We do not show the feedback loops of control requests
ity. For example, many engineering systems, such as com- (C1 , C2 , C 11 ..., C22 ) since all edges concerning observables can be
mercial aircraft, are subdivided into Line-Replaceable Units cut [7].



to integrate these local component diagnoses into a globally
SX4 sound, minimal and consistent diagnosis, since for many sys-

XA=RF, ,R1 FX
1F C1 CRE R {D ,tems the diagnostics generated locally are either incomplete

Cl> Cl2, A ý-mode XI={S11, VD,,RF,,
-[RvC C1,, P1, -model or not minimal.

XI={RF, c1 c2, R A2 R, •Note that we can obtain global diagnostics for a modular
•Tx-model C CLX6system by composing local blocks and diagnosing the entire
X Xfi={Sm, VD ,RF1, system model. However, it is true in many cases that global

X=RF, C2,RF2, CP 2-Mode and local diagnostics may differ. We now define a notion of

CC2,A Xcorrespondence between local and global diagnoses.

x3  X1={S, VDZRF2, The conjunction of the set of distributed system descrip-
C•, P_-mode} tions is defined as Ddit (0) AikCB D 1k (0), and we know

C that Ddaýt (0) D(O) only when 0 - U i, j .
We can compute the diagnoses for this set of distributed

system descriptions either using an on-line algorithm, or by
Figure 2: Decomposition graph of extended IFE system de- pre-computing the set of diagnoses for D dit (0). In the fol-
scription. Here an oval corresponds to a vertex, and a block lowing, we outline the compiled method of diagnosis.
corresponds to a sepset. We specify the variables associated We define a table, called a clan table, to specify local and
with each vertex in the graph. global diagnoses for collections of blocks. This table com-

piles the local case-analysis required by Theorem 1. We will

This diagnostic framework provides the capability to rank show later how to use this table for our diagnosis synthesis

diagnoses using a likelihood weight ri assigned to each as- algorithm.

sumable Ai, i = I, ... m. Using the likelihood algebra de- Definition 10 A clan (or local/global diagnosis) table for
fined in [8], we can compute the likelihood assigned to each block-set B ={14i, ... 4j} is a table consisting of tuples
diagnosis for observation 0. We refer to a (diagnosis, weight) (observable-intantiation, global diagnosis, weight) for all ab-
pair using (D(0), ri). We use the weights to rank diagnoses, normal instantiations of observables 0 in B.
i.e., least-weight diagnoses are the most-likely. This provides
a notion of minimal diagnosis, i.e. a diagnosis of weight r Note that we can use the compositionality of blocks to
such that there exists no lesser-weight diagnosis. show that any time we compose a system description from

multiple blocks, we obtain "global" diagnostics for that com-
3.4 LOCAL/GLOBAL DIAGNOSTICS posed system description when we compute diagnoses over

Our methodology rests on the determination of when com- the composed system description. Hence the "global" diag-

ponent diagnoses are independent, in which case the global nosis for each collection of blocks is computed from a system

diagnosis is just the conjunction of the component diagnoses. description generated from the composition of the system de-
We apply the decomposition theorem of [8] to this case of scriptions of the blocks in B, using the observables from B.

distributed diagnostics: Example 1 Table 1 contrasts the local and global diagnoses

Theorem 1 if we have a system description 4D consisting of for a set of scenarios where the set B of blocks is an ADB
two component system descriptions 4)1 and (D2, and a sys- with downstream passenger units. In these scenarios, we
tem observation 0, if the variables shared by (D I and (D2 all compute the (probabilistically) most-likely diagnosis, assum-
appear in 0, then ing that all faults are equally likely, i.e., have weight 1. More-

over, in defining a local diagnosis in Table 1, we report the
D`' (0) =D~' (01) A D`' (02). conjunction of all local diagnoses, i.e. the local diagnosis is

This theorem states that a diagnosis is decomposable pro- ADB-diagnosis A Pi-diagnosis A PI-diagnosis. In scenarios

vided that the system observation contains the variables 1, 2 and 4, the local and global diagnoses are identical. How-

shared between 41 and 42. However, what happens when ever, in scenarios 3, 5 and 6, they differ: the passenger units

the observation 0 does not contain all variables shared be- each assume a local fault, whereas the transmitter unit is the

tween 4), and 4)2? One solution [8] is to decompose the com- faulty one (since a single transmitter fault is much more likely

putation of D"' by performing a case-analysis of all shared the two simultaneous faults, one in each passenger unit).6

variables ý12. However, this case-analysis approach is expo- Given this potential for discrepancy between local and
nential in 112 1, the number of variables on which we do case- global diagnoses, we map the decomposition graph into a
analysis. Hence if we wanted to embed the diagnostics code, representation, the clan graph, from which we can synthesize
such a case-analysis might be too time-consuming when per- globally sound and complete minimal diagnoses from local
formed on a system-level model, minimal diagnoses. Figure 3 shows the clan graph for the

In the following we assume that each component computes extended IFE example.
a local diagnosis, i.e., a diagnosis based only on local ob-
servables and on equations containing only local variables. In 6These differences arise due to different instantiations of the RF
contrast a global diagnosis is one based on global observables signal in the local and global diagnosis. We hide the details of the
and on equations describing all system variables. Our task is case-analysis of shared variables for simplicity of presentation.



I Scenario I ADB 1 Unit Pass. Unitt I Pass. Unit 12  ] Diagnosis

C'1 1  (12 S11 VD 1  S 1 2  VD 1 2  LOCAL GLOBAL
I audio audio nomn. none nom. none I
2 audio audio none none norn. none P- 1 -audioai! -P1 t -audio-ai!i
3 audio audio none none none none [ Pi1-audio-frilA P1 a-audio-fri! Xaudio

4 video video nom. norm. norm. none P1 2 -video-frNi P1 2 -video-lil
5 video video non. none norn. none PPtI-video-failA P1 2 -video-foil Xvideo
6 audio video none none none. none Prt-audio-failA P 1 2 -video-/lil ADBI1fajil

Table 1: Diagnostic Scenarios. We denote a nominal passenger output of nominal using nom., and abnormal observable data in
bold-face. Xaudio denotes degraded audio, and Xvideo denotes degrated video.

R computes a tree-decomposition in which each node of the
tree is a clique, and undirected edges correspond to shared
variables between cliques.

Given a tree-decomposition, inference complexity is based
on the treewidth, defined as follows. The width of a tree de-

Scomposition is maxie, ýXi - 1. The treewidth of a graph G
is the minimum width over all tree decompositions of G. The

ADB2.mde X3 X5 X7 treewidth bears close relations to the maximal vertex degree
and maximal clique of a graph, so it provides a measure of
the complexity of diagnostic inference, among other things.

Figure 3: Clan graph of extended IFE system description. If a graph has a low treewidth then inference on the graph
is guaranteed to be easy. The task of computing treewidth is

Definition 11 (Clan graph) A clan graph Gy of a DAG NP-hard [2]. Many algorithms exist that, given a graph with n

g(V, E) of vertices V and edges E is an edge-labeled D-tree variables, will compute an optimal treewidth in time polyno-

G(Y, E, ý) defined as follows: (1) vertices y { Y, }, mial in n but exponential in the treewidth k; see, for example,
where each node Yi consists of a clan of g; (2) edges de- [4].

fined by non-empty intersections between pairs of vertices Directed Tree-Decomposition

E {(Y.j Yk)IYj n i ý4 0}; and (3) separators defined The difference between the standard literature on tree-
by the edge intersections j { = q Yj }. decompositions and the task addressed here is that the stan-

dard literature focuses on undirected graphs, and we focus on
The following section shows how we use the clan graph for directed graphs. We capture and exploit the directionality of

distributed diagnosis. causal relations during all phases of diagnostic inference. For

example, if we have an abstract hierarchical specification of
4 DISTRIBUTED MODEL-BASED a system and compute diagnostics for each abstract hierar-

DIAGNOSIS chical block, we still preserve the directionality of causality
among the abstract blocks. We exploit this directionality us-

Thising a diagnostic synthesis algorithm operating on a directed
algorithm. We first map the directed graph of the system into treee

a tree using tree-decomposition techniques, and then employ tree.

a message-passing algorithm on the tree. Definition 13 A D-tree TE) is a directed graph with vertices
CVT, and a vertex V0, called the root, with the property that

4.1 TREE-DECOMPOSITION ,for every vertex V E VcT, there is a unique directed walk from
The work on tree-decomposition stems from work on V0 to V.
treewidth and graph minors [23]. A good review of the liter- The tree-decomposition results have been generalized to
ature can be found in [5]. We define the basic notions below, directed graphs in [16], and we make use of some of those

Definition 12 A tree decomposition of an undirected graph results here. The key change is that we need to preserve or-
G (V, E) is a pair (X, T) with T (I, F) a tree, and dering of edges during the decomposition process. To capture
Xl {X ii IJ} is a family of subsets of V, one for each such properties, we first need to define a notion of variable or-
node of T, such that dering, called Z-normality.

1. Uic1 X = V; Definition 14 Let g be a digraph and let Z C V. A setSis Z-
2. for all edges {v, w} C E there exists an i C I with normal if and only if the vertex-sets of the strong components

v E Xi andw E Xj, and of \ Z can be numbered S1 S 2 . Sd such that

3. for alli, j k C I ifj is on the pathfrom ito kin T, then 1. if I < i < j < d, then no edge of g has a head in Si
X, nXk C XJ. and tail in Si, and

The last property is known as the running-intersection prop- 2. either S 0 or S Si U Si+1 ... U S j,for some integers
erty within the BN community. The clique-tree algorithm i, j with I < i < j < d.



Definition 15 A D-tree decomposition of a digraph g where Xi, ... Xk are members of a clan Y E gy, each block
(V0 E) is a pair (X, Th) with Th (= , Y) a D-tree, and computes diagnostics locally. We then compute the most
X { XIi E -} is a family of subsets of V, one for each likely fault-mode assignment for Y through a process we call
node of T-D, and the edges are numbered j { 1 } with diagnostics synthesis, which entails table-lookup in the clan
F {fj j = J}, such that table of the minimal diagnosis given 0. The algorithm synthe-

1. Uic = V; sizes final diagnoses, going from the leaves to the root. This
guarantees a sound, complete and globally minimum system

2. for all edges {v, w} E S there exists an i E - with diagnosis.
v E Xi and w E Xj, and In this approach we first need to pre-compute the clan table,

3. for all i, j, k E -1 if j is on the path from i to k in T-D, and then use that table for diagnostic synthesis. We can pre-
then Xi n Xk C X3" compute the clan table from a set of blocks {1). (k} as

4. if j E J, then Ujf{X: i E . i > j}I is Xi-normal. follows:
1. Generate the decomposition graph Gx from

The width of a tree decomposition is the least integer w such {1, ... , 4k}, with indices increasing in a breadth-
that for all i c I, [Xi U U XjI < w + 1, where the union is first manner from the root.
taken over all edges j E j incident with i. maxil [Xi I - 1. 2. Generate the clan graph Gy of Gx.
The treewidth of a graph g is the least integer w such that g 3. Compute the clan table for each clan YI in Gy.
has a D-tree-decomposition of width w. Given an observation 0, the diagnostic synthesis algorithm

For the class of applications addressed in this article, the is as follows:
input graphs g for the system description are digraphs, and 1. Given observation 0, each block Bi computes its local
the decomposition graph and clan graph are both D-tree de- diagnosis D' (0) and likelihood h(Dl"'i).
compositions of g. For more general digraph topologies, by 2. Mark all nodes Xi, i .I n with flag=O;
applying an algorithm for generating D-tree decompositions, 3. Loop for j = n to 1:
we can convert the digraphs into a decomposition graph, and (a) If flag=0 for Xj do:
apply the diagnostic synthesis approach. Many of the prop- For each node Xi in the clan Y(:j), look up
erties of undirected tree-decompositions hold for the directed corresponding clan diagnosis D (0) and weight
case [16]. r,(D"' 1 (0)) in the clan-table;

4.2 DIAGNOSIS OF SYSTEMS WITH If r (D"•y (0)) < Zri(Dl'k),
TREE-STRUCTURED GRAPHS kk Y

We now describe an approach to diagnosing systems with * revise fault-mode assignment to nodes in Y (j),
tree-structured decomposition graphs. by (a) setting the minimum-weight diagnosis

We assume that: mode-variable; (b) if any local diagnosis D' is

"* We are provided with the component system descrip- syntlhesized, update D'
tions and their connectivity; e reassign va ues to variables in Y based on D and

0
"* There is a single root in the decomposition graph (which e if reassignment is sound pass message with fault

is a component with no parent-components), and each * e l Y(X0)to 1;
leaf is a component with no child-component; a o

Theorem 2 Given a tree-structured decomposition graph

"* Nodes have indices starting at the root (X 1), increas- GX and local component diagnoses, diagnostics synthesis
ing based on a breadth-first expansion from the root and will compute a sound and globally consistent set of fault
ending at the leaves, labeled X ..... ... , Xý; mode assignments for components X C Gx within 0(QYj)

"* Each component computes a local diagnosis based on message-passing steps, where gy is the clan graph generated
local observables. from Gx.

We base our approach on synthesizing diagnoses, starting Example 2 Diagnosis Synthesis in a Clan: Consider Sce-
from the leaf components and ending up at the root of the nario 3 of Table 1. For this observation 0, the total set of
tree. We first decompose the decomposition graph into a clan possible clan diagnoses is: (P11 , audio-fail) A (P 12, audio-
graph. Based on the clan graph we construct a clan table for fail) V (ADBI Xaudio). The weights of the diagnoses are 2
each node in the graph. and 1, respectively.

This algorithm is inspired by the Bayesian network clique- In computing diagnoses on a purely local basis, the result-
tree approach of [17], but replaces the clique-tree with ing diagnosis is (P11 , audio-fail) A (P 12, audio-fail), with
an analogous clan-tree, and passes diagnoses as messages. weight 2. Note however there is a family diagnosis of weight
Analogous to the clique-tree method's clique-table pre- 1, (ADB1, Xaudio), which is selected since it is of lower
computation, this approach requires pre-computing clan- weight than the distributed diagnosis. We now instantiate
tables, but for embedded systems this results in computation- each local component with 0, and set diagnoses as follows:
ally simpler algorithms than those adopted in the past. (Pll, 0), (P12, 0), (ADBi, Xaudio). There exists a consistent

Under this scheme, we pre-compute clan tables for each set of local variable instantantiations for this assignment, so
clan in gy. Given an observation 0 for blocks Xi, ... , Xk, no further message-passing is necessary.



The worst-case complexity of computing a clan table is ex-
yO• Y nod~e• PlP1 p~ a!D ponential in the number of variables in the clan table. The

Y1 ADB,-ode P,,--ode memory requirements for storing the clan tables are defined
ADBO Family Dx as follows. In the worst case, for a clan with mode vari-

ables A,41 ..., Am, where each mode variable has WA, I faulty
ADB,-mode y d P, LocalDx values, a clan table stores an entry for each of the X iWIUAi

P P,-ode AIB Family Dx multiple-fault combinations. For single-fault scenarios, a clan
table must store only ji wU)Ai I entries.

ADB, The main issue is the time-complexity of generating the
clan tables. For tree-structured systems the complexity of di-

Figure 4: Diagnosis synthesis procedure, Step 1: (a) local agnosing g is exponential in the clan size, and the complexity
diagnoses synthesized at clans, and (b) clan diagnoses are is bounded by the largest clan of g. Hence the complexity of
passed between families, as noted by dark arrows, initially computing diagnoses is the same for the centralized

and distributed approaches. However, for embedded applica-
Example 3 Message-Passing: Figure 4 shows the first stage tions, the distributed approach has a complexity advantage,
of this procedure. In the graph we show nodes where the vari- since only clan-table lookup and simple message-passing are
ables are restricted to fault mode variables, to simplify the required.
description of message-passing of instantations of mode vari-
ables. First, the local diagnoses are computed at each node 5 RELATED WORK
in the decomposition graph: all four passenger units register
a fault, and no other nodes in the decomposition graph reg- Our approach to distributed diagnosis has been preceded by
ister faults. As a shorthand, we denote a fault-weight pair many pieces of related work, and we review several here.
using variable-names for faults, with 0 denoting a nominal Note that this review examines the most relevant work, and
mode. Then, these faults are synthesized at each clan using does not claim to be exhaustive.
the clan-table: fault-weight pair (P 1 A P 12, 2) is synthesized One of the most closely-related pieces of work describes
into (ADB 1, 1), and fault (P 21 A P 22, 2) is synthesized into techniques for distributed logical inference [1; 20]. This work
(ADB 2, 1). Second, the synthesized faults (ADB1 , 1) and focuses on how to perform logical reasoning and query an-
(ADB 2, 1) are sent to the adjacent node in the clan graph, swering, proposing sound and complete message passing al-
Y1. gorithms, by exploiting the tree structure of distributed theo-

ries. They examine the complexity of computation, propose
specialized algorithms for first-order resolution and focused
consequence finding, and propose algorithms for optimally
partitioning a theory that is not already distributed. In some
ways, our task can be considered a special case of the general

;B, Local Dx problem that Amir and McIlraith examine. Logical inference
T-mode P,,-mode mdl igotccmue

AOB,-node 2 Family Dx computes a model, whereas diagnostic inference computes a
AD minimal model in the assumables, a subset of the language

ADB, ADB, Local Dx Y, ADB -'d Local Dx of the theory. We leverage many aspects of the specific diag-
SADB2-ode P,,-mode 0 nosis problem in our work, aspects that serve to distinguish

T' Family Dx -mode Family Dx both our approach and our results. These include the notion

of causality, which imposes a directionality on the tree struc-
Figure 5: Diagnosis synthesis procedure, Step 2: global diag- ture and the inference, and the notion of preference. In ad-
noses computed following family diagnosis message-passing. dition, the task of diagnostic inference depends critically on

two classes of distinguished variables, assumables (the liter-
Figure 5 shows the second stage of this procedure. Fault- als of interest) and observables (the inputs), and distributed

weight pair (ADB1 A ADB 2 , 2) is synthesized into (Tx, 1) diagnosability depends on how assumables and observables
at clan Y1, and all other fault-modes are set to nominal. This are distributed among the collection of blocks. In addition,
is the global minimum-weight fault, if the variables common between two blocks are observable,

then from a distributed diagnostics point of view those blocks
4.3 COMPLEXITY ISSUES are independent [7].
The complexity of logical resolution within a distributed The approach presented here bears some relation to diag-
framework have been discussed in [1]. Here, our task is nostic approaches on trees. Stumptner and Wotawa [25] have
model-based diagnosis within a tree-structured topology, an algorithm for diagnosing tree-structured systems. This ap-

This approach is based on computing diagnoses for the proach assumes a centralized system defined at the compo-
clans of g. Hence, it never needs to diagnose a system de- nent level whereas our approach deals with distributed sys-
scription for the entire graph g, but only for the clans of g. tems that can be defined at any level of abstraction. In ad-
As noted in Theorem 2, once the clan tables are computed, dition, our assumption of sub-systems computing their own
given any local component diagnoses, the algorithm is linear diagnoses means that our diagnostic synthesis process is a
in the number of nodes in the clan-graph, single-pass algorithm from the leaves of the tree to the root,



whereas Stumptner and Wotawa need a two-pass approach We are in the process of applying this approach to two real-
since they must first enumerate all component diagnoses. A world domains, that of In-Flight Entertainment and diagnosis
second major tree-based method uses a clique-tree decom- of HVAC systems.
position of a system, e.g., the diagnostic method of [13]. A The approach presented here provides a mechanism for
clique-tree is a representation that is used for many kinds of designing systems with predictable distributed diagnostics
inference in addition to diagnosis, including probabilistic in- properties. A given decomposition graph can be rated accord-
ference and constraint satisfaction. The tree we generate is a ing to its diagnosability and efficiency. Additionally, given a
directed tree with a fixed root, and the nodes of the tree are system description, we can apply D-tree decomposition al-
generated based on the clan property; a clique-tree is undi- gorithms to the system DAG to assist in identifying small-
rected (with an arbitrary root), and the nodes of the tree are treewidth decompositions, if any exist. Further, if a system
generated based on the family property. One can think of has no small treewidth decomposition, one can then recom-
the D-tree as a directed variant of a clique-tree, which is op- mend system re-design to be facilitate efficiently computing
timized for diagnostic inference. In addition, our approach distributed diagnoses.
uses the ordering of the D-tree to require message-passing in
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